1/2/2026 at 2:19:16 AM
For those of you wondering if this fits your use case vs the RTX 5090 the short answer is this:The desktop RTX 5090 has 1792 GB/s of memory bandwidth partially due to the 512 bit bus width, compared to the DGX Spark with a 256 bit bus and 273 GB/s memory bandwidth.
The RTX 5090 has 32G of VRAM vs the 128G of “VRAM” in the DGX Spark which is really unified memory.
Also the RTX 5090 has 21760 cuda cores vs 6144 in the DGX Spark. (3.5 x as many). And with the much higher bandwidth in the 5090 you have a better shot at keeping them fed. So for embarrassingly parallel workloads the 5090 crushes the Spark.
So if you need to fit big models into VRAM and don’t care about speed too much because you are for example, building something on your desktop that’ll run on data center hardware in production, the DGX Spark is your answer.
If you need speed and 32G of VRAM is plenty, and you don’t care about modeling network interconnections in production, then the RTX 5090 is what you want.
by mmaunder
1/2/2026 at 4:24:30 AM
It's also worth nothing that the 128GB of "VRAM" in the GB10 is even less straightforward than just being aware that the memory is shared with the CPU cores. There's a lot of details in memory performance that differ across both the different core types, and the two core clusters:https://chipsandcheese.com/p/inside-nvidia-gb10s-memory-subs...
by chao-